数学相遇问题的讲解
相遇应用题
1、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。
2、特点:
它的特点是两个运动物体共同走完整个路程。小学数学教材中的行程问题,一般是指相遇问题。
3、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
4、三者的基本关系及公式:它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度
速度和:两个运动物体(人)在单位时间(时、分、秒)所行驶的速度和,即:速度和=甲速+乙速。
相遇时间:两个运动物体(人)同时出发到相遇所用的时间。
相遇路程:两个运动物体(人)同时出发到相遇所走的路程。
基本的数量关系是:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
解答相遇问题,应注意物体运动的方向、出发时间、相遇时间、是否相遇等。关键是找出两个物体的速度和,然后根据两地路程求出相遇时间,或根据相遇时间求出两地路程。稍复杂的,可借助线段图帮助理解题意,找出解题途径。
延伸阅读
相遇问题的三种题型解方程
公务员考试行测数量关系之行程问题之相遇问题的解题技巧,如:
1.
公式法
速度和×相遇时间=相遇路程。
2.
相遇问题的核心是“速度和”问题
甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间。
3.
二次相遇问题
甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
路程相遇题两种解题方法
(一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度 (二)追及问题 追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。 根据速度差、距离差和追及时间三者之间的关系,常用下面的公式: 距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间 速度差=快速-慢速 解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。 (三)二、相离问题 两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和×相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间 流水问题 顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。 船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。各种速度的关系如下: (1)划行速度+水流速度=顺流速度 (2)划行速度-水流速度=逆流速度 (3)(顺流速度+ 逆流速度)÷2=划行速度 (4)(顺流速度-逆流速度)÷2=水流速度 流水问题的数量关系仍然是速度、时间与距离之间的关系。即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。但是,河水是流动的,这就有顺流、逆流的区别。在计算时,要把各种速度之间的关系弄清楚是非常必要的。