等差数列的前n项和公式推导过程(等差数列三个基本公式)

等差数列前n项和的性质及其推导过程?

性质:如果等差数列的前n项公式是

Sn=1/2(a1+an)?n,

则S2n-1=an

证明,等差数列的和是第1项与第n的和乘以n除以2,所以等差数列前奇数项的和是

S2n-1=1/2(a1+a2n-1)(2n-1)。又an是a1与a2n-1的等差中项即2an=a1+a2n-1带入成立。

三个等差数列公式是什么?

等差数列基本公式:

末项=首项+(项数-1)×公差

项数=(末项-首项)÷公差+1

首项=末项-(项数-1)×公差

和=(首项+末项)×项数÷2

通项公式

等差数列的通项公式为:an=a1+(n-1)d (1)

前n项和公式

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)

以上n均属于正整数.

推论

1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

若m+n=2p,则am+an=2ap

4.其他推论

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

推论3证明

若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq

如am+an=a1+(m-1)d+a1+(n-1)d

=2a1+(m+n-2)d

同理得,

ap+aq=2a1+(p+q-2)d

又因为

m+n=p+q ;

a1,d均为常数

所以

若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq

注:1.常数列不一定成立

2.m,p,q,n大于等于自然数

等差中项

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式.

等差数列的前n项和公式 是什么

等差数列的前n项和公式:an=a1+(n-1)d=ak+(n-k)*d。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

等差数列前n项和公式结构特征

等差数列前n项和公式结构特征:an=a1+(n-1)d=am+(n-m)d=pn+k,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。

这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)×d。首项a1=1,公差d=2。前n项和公式为:Sn=a1×n+【n×(n-1)×d】/2或Sn=【n×(a1+an)】/2。注意:以上n均属于正整数。

设等差数列{an}前n项和为Sn,且a=8,S3=0.(I)求{an}的通项公式;

  • (II)令B=(12)^AN,求{BN}前N项和TN;(III)若不等式K4-TN≥2AN-3对于N恒成立,求实数K取值范围。
  • 题目是不是错了:an=8,这个n应该是具体数字,否则条件不足。这样可以么?

等差数列知道公差的情况下 求前n项的和的公式

  • Sn=a1+n(n-1)d2

等差数列的前n项和公式与函数的关系?

  • 这个公式,谁能帮忙推算一下
  • 前n项和公式为: Sn=na1+n(n-1)d2或Sn=n(a1+an)2 一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d2或Sn=n(a1+an)2(2) 以上n均属于正整数从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。

求等差数列1,3,5,7,…的通用公式及前8项的和

  • 通项公式:an=2n-1前8项和:a8=2×8-1=15,S8=(1+15)×8÷2=64.

数学学渣一个,吐槽的勿扰,有用的好评。请听题,等差数列中,前n项和的公式有Sn=n(a1+an)

  • 数学学渣一个,吐槽的勿扰,有用的好评。请听题,等差数列中,前n项和的公式有Sn=n(a1+an)2 还有一个是Sn=na1+n(n-1)2×d 这两个公式区别?
  • 看题目给你什么条件用什么公式,给首项末项当然就用第一个啊…
版权声明

返回顶部